

 Navigation

 	
 index

 	
 next |

 	School Inspector 0.1 documentation

Welcome to School Inspector’s documentation!

Contents:

	Server Setup
	Provisioning

	Layout

	Deployment

	Server Provisioning
	Overview

	Initial Setup

	Managing Secrets

	Environment Variables

	Setup Checklist

	Salt Master

	Provision a Minion

	Optional Configuration

	Vagrant Testing
	Starting the VM

	Provisioning the VM

	Testing on the VM

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	School Inspector 0.1 documentation

Server Setup

Provisioning

The server provisioning is managed using Salt Stack [http://saltstack.com/]. The base
states are managed in a common repo [https://github.com/caktus/margarita] and additional
states specific to this project are contained within the conf directory at the root
of the repository.

For more information see the doc:provisioning guide </provisioning>.

Layout

Below is the server layout created by this provisioning process:

/var/www/school_inspector/
 source/
 env/
 log/
 public/
 static/
 media/
 ssl/

source contains the source code of the project. env
is the virtualenv [http://www.virtualenv.org/] for Python requirements. log
stores the Nginx, Gunicorn and other logs used by the project. public
holds the static resources (css/js) for the project and the uploaded user media.
public/static/ and public/media/ map to the STATIC_ROOT and
MEDIA_ROOT settings. ssl contains the SSL key and certificate pair.

Deployment

For deployment, each developer connects to the Salt master as their own user. Each developer
has SSH access via their public key. These users are created/managed by the Salt
provisioning. The deployment itself is automated with Fabric [http://docs.fabfile.org/].
To deploy, a developer simply runs:

Deploy updates to staging
fab staging deploy
Deploy updates to production
fab production deploy

This runs the Salt highstate for the given environment. This handles both the configuration
of the server as well as updating the latest source code. This can take a few minutes and
does not produce any output while it is running. Once it has finished the output should be
checked for errors.

 Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	School Inspector 0.1 documentation

Server Provisioning

Overview

School_Inspector is deployed on the following stack.

	OS: Ubuntu 12.04 LTS

	Python: 3.4

	Database: Postgres 9.1

	Application Server: Gunicorn

	Frontend Server: Nginx

	Cache: Memcached

These services can configured to run together on a single machine or on different machines.
Supervisord [http://supervisord.org/] manages the application server process.

Initial Setup

Before your project can be deployed to a server, the code needs to be
accessible in a git repository. Once that is done you should update
conf/pillar/<environment>/env.sls to set the repo and branch for the environment.
E.g., change this:

FIXME: Update to the correct project repo
repo:
 url: git@github.com:CHANGEME/CHANGEME.git
 branch: master

to this:

repo:
 url: git@github.com:codefordurham/school-inspector.git
 branch: master

The repo will also need a deployment key generated so that the Salt minion can
access the repository. You can generate a deployment key locally for the new
server like so:

ssh-keygen -t rsa -b 4096 -f <servername>

This will generate two files named <servername> and <servername>.pub.
The first file contains the private key and the second file contains the public
key. The public key needs to be added to the “Deploy keys” in the GitHub repository.
For more information, see the Github docs on managing deploy keys:
https://help.github.com/articles/managing-deploy-keys

The text in the private key file should be added to conf/pillar/<environment>/secrets.sls`
under the label github_deploy_key, e.g.:

github_deploy_key: |
 -----BEGIN RSA PRIVATE KEY-----
 foobar
 -----END RSA PRIVATE KEY-----

There will be more information on the secrets in a later section. You may choose
to include the public SSH key inside the repo itself as well, but this is not
strictly required.

You also need to set project_name and python_version in conf/pillar/project.sls.
Currently we support using Python 2.7 or Python 3.3. The project template is set up for 2.7 by
default. If you want to use 3.3, you will need to change python_version and make a few changes
to requirements. In requirements/production.txt, change python-memcached to python3-memcached.
In requirements/dev.txt, remove Fabric and all its dependencies. Instead you will need Fabric
installed on your laptop “globally” so that when you run fab, it will not be found in your
virtualenv, but will then be found in your global environment.

For the environment you want to setup you will need to set the domain in
conf/pillar/<environment>/env.sls.

You will also need add the developer’s user names and SSH keys to conf/pillar/devs.sls. Each
user record (under the parent users: key) should match the format:

example-user:
 public_key:
 - ssh-rsa <Full SSH Public Key would go here>

Additional developers can be added later, but you will need to create at least one user for
yourself.

Managing Secrets

Secret information such as passwords and API keys should never be committed to the
source repository. Instead, each environment manages its secrets in conf/pillar/<environment>/secrets.sls.
These secrets.sls files are excluded from the source control and need to be passed
to the developers out of band. There are example files given in conf/pillar/<environment>/secrets.ex.
They have the format:

secrets:
 DB_PASSWORD: XXXXXX

Each key/value pair given in the secrets dictionary will be added to the OS environment
and can retrieved in the Python code via:

import os

password = os.environ['DB_PASSWORD']

Secrets for other environments will not be available. That is, the staging server
will not have access to the production secrets. As such there is no need to namespace the
secrets by their environment.

Environment Variables

Other environment variables which need to be configured but aren’t secret can be added
to the env dictionary in conf/pillar/<environment>/env.sls:

Additional public environment variables to set for the project
env:

FOO: BAR

For instance the default layout expects the cache server to listen at 127.0.0.1:11211
but if there is a dedicated cache server this can be changed via CACHE_HOST. Similarly
the DB_HOST/DB_PORT defaults to ''/'':

env:
 DB_HOST: 10.10.20.2
 CACHE_HOST: 10.10.20.1:11211

Setup Checklist

To summarize the steps above, you can use the following checklist

	repo is set in conf/pillar/<environment>/env.sls

	Developer user names and SSH keys have been added to conf/pillar/devs.sls

	Project name has been set in conf/pillar/project.sls

	Environment domain name has been set in conf/pillar/<environment>/env.sls

	Environment secrets including the deploy key have been set in conf/pillar/<environment>/secrets.sls

Salt Master

Each project needs to have at least one Salt Master. There can be one per environment or
a single Master which manages both staging and production. The master is configured with Fabric.
You will need to be able to connect to the server as a root user.
How this is done will depend on where the server is hosted.
VPS providers such as Linode will give you a username/password combination. Amazon’s
EC2 uses a private key. These credentials will be passed as command line arguments.:

Template of the command
fab -H <fresh-server-ip> -u <root-user> setup_master
Example of provisioning 33.33.33.10 as the Salt Master
fab -H 33.33.33.10 -u root setup_master
Example DO setup
fab -H 107.170.136.182 -u root setup_master
Example AWS setup
fab -H 54.86.14.136 -u ubuntu -i ~/.ssh/aws-cfa.pem setup_master

This will install salt-master and update the master configuration file. The master will use a
set of base states from https://github.com/caktus/margarita using the gitfs root. Once the master
has been provisioned you should set:

env.master = '<ip-of-master>'

in the top of the fabfile.

If each environment has its own master then it should be set with the environment setup function staging or production.
In these case most commands will need to be preceded with the environment to ensure that env.master
is set.

Additional states and pillar information are contained in this repo and must be rsync’d to the master via:

fab -u <root-user> sync

This must be done each time a state or pillar is updated. This will be called on each deploy to
ensure they are always up to date.

To provision the master server itself with salt you need to create a minion on the master:

fab -H <ip-of-new-master> -u <root-user> --set environment=master setup_minion:salt-master
fab -u <root-user> accept_key:<server-name>
fab -u <root-user> --set environment=master deploy
Example DO (may have to run a second time to catch key)
fab -H 107.170.136.182 -u root --set environment=master setup_minion:salt-master
fab -H 107.170.136.182 -u root --set environment=master deploy
Example AWS setup
fab -H 54.86.14.136 -u ubuntu -i ~/.ssh/aws-cfa.pem --set environment=master setup_minion:salt-master
fab -H 54.86.14.136 -u ubuntu -i ~/.ssh/aws-cfa.pem --set environment=master deploy

This will create developer users on the master server so you will no longer have to connect
as the root user.

Provision a Minion

Once you have completed the above steps, you are ready to provision a new server
for a given environment. Again you will need to be able to connect to the server
as a root user. This is to install the Salt Minion which will connect to the Master
to complete the provisioning. To setup a minion you call the Fabric command:

fab <environment> setup_minion:<roles> -H <ip-of-new-server> -u <root-user>
fab staging setup_minion:web,balancer,db-master,cache -H 33.33.33.10 -u root
Example DO
fab production setup_minion:web,balancer,db-master,cache,queue,worker -H 107.170.136.182
Example AWS setup
fab production setup_minion:web,balancer,db-master,cache,queue,worker -H 54.86.14.136

The available roles are salt-master, web, worker, balancer, db-master,
queue and cache. If you are running everything on a single server you need to enable
the web, balancer, db-master, and cache roles. The worker
and queue roles are only needed to run Celery which is explained in more detail later.

Additional roles can be added later to a server via add_role. Note that there is no
corresponding delete_role command because deleting a role does not disable the services or
remove the configuration files of the deleted role:

fab add_role:web -H 33.33.33.10

After that you can run the deploy/highstate to provision the new server:

fab <environment> deploy

The first time you run this command, it may complete before the server is set up.
It is most likely still completing in the background. If the server does not become
accessible or if you encounter errors during the process, review the Salt logs for
any hints in /var/log/salt on the minion and/or master. For more information about
deployment, see the server setup </server-setup> documentation.

Optional Configuration

The default template contains setup to help manage common configuration needs which
are not enabled by default.

HTTP Auth

The secrets.sls can also contain a section to enable HTTP basic authentication. This
is useful for staging environments where you want to limit who can see the site before it
is ready. This will also prevent bots from crawling and indexing the pages. To enable basic
auth simply add a section called http_auth in the relevant conf/pillar/<environment>/secrets.sls:

http_auth:
 admin: 123456

This should be a list of key/value pairs. The keys will serve as the usernames and
the values will be the password. As with all password usage please pick a strong
password.

Celery

Many Django projects make use of Celery [http://celery.readthedocs.org/en/latest/]
for handling long running task outside of request/response cycle. Enabling a worker
makes use of Django setup for Celery [http://celery.readthedocs.org/en/latest/django/first-steps-with-django.html].
As documented you should create/import your Celery app in school_inspector/__init__.py so that you
can run the worker via:

celery -A school_inspector worker

Additionally you will need to configure the project settings for Celery:

school_inspector.settings.staging.py
import os
from school_inspector.settings.base import *

Other settings would be here
BROKER_URL = 'amqp://school_inspector_staging:%(BROKER_PASSWORD)s@%(BROKER_HOST)s/school_inspector_staging' % os.environ

You will also need to add the BROKER_URL to the school_inspector.settings.production so
that the vhost is set correctly. These are the minimal settings to make Celery work. Refer to the
Celery documentation [http://docs.celeryproject.org/en/latest/configuration.html] for additional
configuration options.

BROKER_HOST defaults to 127.0.0.1:5672. If the queue server is configured on a separate host
that will need to be reflected in the BROKER_URL setting. This is done by setting the BROKER_HOST
environment variable in the env dictionary of conf/pillar/<environment>/env.sls.

To add the states you should add the worker role when provisioning the minion.
At least one server in the stack should be provisioned with the queue role as well.
This will use RabbitMQ as the broker by default. The
RabbitMQ user will be named school_inspector_<environment> and the vhost will be named school_inspector_<environment>
for each environment. It requires that you add a password for the RabbitMQ user to each of
the conf/pillar/<environment>/secrets.sls:

secrets:
 BROKER_PASSWORD: thisisapasswordforrabbitmq

The worker will run also run the beat process which allows for running periodic tasks.

 Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	School Inspector 0.1 documentation

Vagrant Testing

Starting the VM

You can test the provisioning/deployment using Vagrant [http://vagrantup.com/]. This requires
Vagrant 1.3+. The Vagrantfile is configured to install the Salt Master and Minion inside the VM once
you’ve run vagrant up. The box will be installed if you don’t have it already.:

vagrant up

The general provision workflow is the same as in the previous provisioning guide
so here are notes of the Vagrant specifics.

Provisioning the VM

Set your environment variables and secrets in conf/pillar/local.sls. It is OK for this to
be checked into version control because it can only be used on the developer’s local machine. To
finalize the provisioning you simply need to run:

fab vagrant deploy

The Vagrant box will use the current working copy of the project and the local.py settings. If you
want to use this for development/testing it is helpful to change your local settings to extend from
staging instead of dev:

Example local.py
from school_inspector.settings.staging import *

Override settings here
DATABASES['default']['NAME'] = 'school_inspector_local'
DATABASES['default']['USER'] = 'school_inspector_local'

DEBUG = True

This won’t have the same nice features of the development server such as auto-reloading but it will
run with a stack which is much closer to the production environment. Also beware that while
conf/pillar/local.sls is checked into version control, local.py generally isn’t, so it will
be up to you to keep them in sync.

Testing on the VM

With the VM fully provisioned and deployed, you can access the VM at the IP address specified in the
Vagrantfile, which is 33.33.33.10 by default. Since the Nginx configuration will only listen for the domain name in
conf/pillar/local.sls, you will need to modify your /etc/hosts configuration to view it
at one of those IP addresses. I recommend 33.33.33.10, otherwise the ports in the localhost URL cause
the CSRF middleware to complain REASON_BAD_REFERER when testing over SSL. You will need to add:

33.33.33.10 <domain>

where <domain> matches the domain in conf/pillar/local.sls. For example, let’s use
dev.example.com:

33.33.33.10 dev.example.com

In your browser you can now view https://dev.example.com and see the VM running the full web stack.

Note that this /etc/hosts entry will prevent you from accessing the true dev.example.com.
When your testing is complete, you should remove or comment out this entry.

 Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	School Inspector 0.1 documentation

Index

 Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/comment.png

search.html

 Navigation

 		
 index

 		School Inspector 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Code for Durham.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

